HSQ Experiment

Ezra Kim, Devin Brown 8/17/10

Experiment summary

- 1. vary post apply bake temperatures (slides 4-16)
- 2. developer concentration conditions for 30 nm dots (slides 17-23)
- 3. developer concentration effect on large 50 um features (slides 24-26)
- 4. dose optimization on line width and pitch using low concentration developer (slides 27- 38)
- effect of delay between exposure and develop (slides 39 42)

HSQ Post Apply Bake Experiment

HSQ Post Apply Bake Experiment

- Purpose
 - To identify, and confirm the effect of different post apply bake conditions for HSQ

Process Condition

- XR-1541 (HSQ) 6% on a 1" square silicon substrate piece
- Spin conditions = 5000 rpm, 2500 rpm/s, 60 sec
- post apply bake (various conditions)
- average resulting thickness (pre-develop) ~ 116nm
- Develop: MF-319 for 70 seconds, DI water rinse for 60 seconds, nitrogen blow dry

Experiment 1

- 3 post apply bake conditions
 - 80 C 4 min
 - 150 C 2 min
 - 250 C 2 min

Summary of different bake conditions

bake	highest dose with no residue (μC/cm²)	thickness (nm)	pre-develop thickness (nm)
80 °C 4 min	550	100	116
150 °C 2 min	550	99	n/a
250 °C 2 min	300	81	n/a

 small difference in thickness vs. dose for the various bake conditions at lower doses (left graph)

• difference in residue around 50 x 50 um feature with different bake conditions (see right table)

• lower bake temperature can achieve a higher post develop resist thickness without residue by using higher dose (see right table)

Experiment 2

• Purpose

- see if experiment 1 is repeatable
- evaluate no bake

Summary of different bake conditions

- some differences to experiment 1 but general trend is repeatable
- there is no significant difference in thickness vs. dose for the various bake conditions (left graph)
- BUT, there is a difference in residue around 50 x 50 um feature with different bake conditions (see right table)
- lower bake temperature can achieve a higher post develop resist thickness without residue by using higher dose (see right table)

HSQ Dots Experiment

Process Condition

- •HSQ 6% on a silicon substrate
- •Spin conditions = 5000 rpm, 2500 r/s², 60 sec
- •Bake= 80 °C for 4 minutes
- •Resulting thickness ~ 119nm
- •CAD File = 30 nm squares on 100 nm pitch

dots with 2.3% TMAH (MF-319) developer

VERY SMALL PROCESS WINDOW

- at 1000 uC/cm2 all dots just starting to print
- at 1100 uC/cm2, only 100 uC/cm2 greater dose, residue starts to form between dots

Develop process:

- MF-319 for 70seconds
- DI water rinse for 60 seconds
- Nitrogen blow dry

dots with 25% TMAH developer

WIDE PROCESS WINDOW

- the process window is much larger using the higher concentration developer
- dots look very uniform at 3000 uC/cm2 and residue does not form between dots until 6800 uC/cm2

Develop:

- TMAH25% for 30seconds
- DI water rinse for 60 seconds
- Nitrogen blow dry

HSQ dots made using 30nm squares pattern

 ο ο	6400μC/cm ²	6600μC/cm ²	6800µC/cm ²	7000µC/cm ²

At dose 6600μ C/cm2, residue around the dots starts to appear.

22

Diameter = 0.0067 * Dose + 7.026

Selected values of the linear trend line above is shown on the chart. 23

Side Experiment

Compare the effect of developing with :

- 1. MF-319 for 70s
- 2. TMAH25% for 30s
- 3. TMAH25% for 7s

TMAH25% for 30s

•Development process using TMAH25% for 30s shows better contrast than using MF-319 for 70s

HSQ Lines Experiment

Process Condition

- •HSQ 6% on a silicon substrate
- •Spin conditions = 5000 rpm, 2500 r/s², 60 sec
- •Bake= 80 °C for 4 minutes
- •Develop = MF-319 for 70seconds, DI water rinse for 60 seconds, nitrogen blow dry

20 nm lines with 1:5 line and spacing ratio

Actual line (exposed region) width:

- Lines are falling over

Actual line (exposed region) width:

- Over exposed

Actual line (exposed region) width:

- Over exposed

50 nm lines with 1:2 line and spacing ratio

Actual line (exposed region) width: Mean = Can not determine

Actual line (exposed region) width: Mean = 31.7 nm

Actual line (exposed region) width: Mean = 32.53 nm

50 nm lines with 1:2 line and spacing ratio

Actual line (exposed region) width: Mean = 46.3nm

Actual line (exposed region) width:

- Over exposed

Actual line (exposed region) width:

- Over exposed

100 nm lines with 1:1 line and spacing ratio

Actual line (exposed region) width: Mean = 64.1nm

Actual line (exposed region) width: Mean = 86.36nm

100 nm lines with 1:1 line and spacing ratio

Actual line (exposed region) width: Mean = 78.24 nm

Actual line (exposed region) width:

- Over exposed

Actual line (exposed region) width:

- Over exposed

100 nm lines with 1:2 line and spacing ratio

Actual line (exposed region) width: Mean = 38.39nm

Actual line (exposed region) width: Mean = 63.37nm

Actual line (exposed region) width: Mean = 71.41nm

100 nm lines with 1:2 line and spacing ratio

Actual line (exposed region) width: Mean = 71.52nm

Actual line (exposed region) width:

- Over exposed

Actual line (exposed region) width:

- Over exposed

100 nm lines with 1:5 line and spacing ratio

Actual line (exposed region) width: Mean =23.24 nm

Actual line (exposed region) width: Mean = 38.055 nm

100 nm lines with 1:5 line and spacing ratio

Actual line (exposed region) width: Mean = 33.83nm

Actual line (exposed region) width: Mean = 54.02nm

Actual line (exposed region) width: Mean = 72.41nm

100 nm lines with 1:10 line and spacing ratio

Actual line (exposed region) width: Mean = 32.05nm

Actual line (exposed region) width: Mean = 43.92nm HSQ Time Experiment

Procedure

 ~1" piece is coated with HSQ and baked at 80C for 4 minutes.

- Loaded piece is exposed for the first time approximately 30minutes after coating.

- The piece is exposed with the exact same pattern with different offsets after 1 hour, and after 2 hours.

The highest dose squares at different time

 Small difference in the size of residue around the squares (the size of the residue decreases as the time after spin coating increases)

Thickness vs. Dose

